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1. Introduction

For a long time in high energy physics there exists a strong interest in the web of dualities

between gauge theory and closed strings. The relationship essentially started with the

inception of string theory as a dual model of hadronic interactions (for a recent review

see, e.g., [1]). From the point of view of QCD, the modern theory of strong interactions,

hadronic strings would be interpreted as color electric flux tubes between quarks. A con-

crete version of gauge/string correspondence was proposed by ’t Hooft in [2] (see also [3 – 5])

in the form of the 1/N -expansion, the central idea of which is that the Feynman graphs

of a large N gauge theory naturally organize themselves as triangulations of a string sur-

face. The rank of the gauge group N is related to the string coupling via gS = 1/N ,

and counts the number of handles of the surface spanned by the non-planar graphs. The

gauge theory/closed string duality is expected to be a limit of a more general open/closed

string correspondence, which should hold at the world sheet level. Open string diagrams

are equivalent to closed string world sheets with holes. The idea behind the open/closed

string correspondence is that the holes can be replaced by closed string vertex operators,
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and absorbed into an adjustment of the sigma model that governs the motion of the closed

string. From the perspective of the low energy effective field theory, this relation between

open and closed strings gives rise to the famous duality between gauge theory and gravity,

the central example of which is the celebrated AdS/CFT correspondence [6 – 9]. The key

physical insight that spurned this development was the discovery of the D-branes [10], fol-

lowed by understanding of the geometrical nature of the non-Abelian Chan-Paton factors

in terms of stacks of coincident branes [11]. On the other side, in terms of the Matrix The-

ory proposal [12] non-Abelian gauge degrees of freedom are just a part of a more general

theory; and thus they naturally incorporate into the web of dualities.

However, there are some difficulties in studying the AdS/CFT conjecture. One of them

is the fact that the weak coupling on the gravity side (closed strings) corresponds to the

strong coupling regime on the gauge theory side (open strings); and this prevents one from

performing simple perturbative checks. It was major breakthrough when it was realized

that some integrable structures were present in the scalar subsector of N = 4 SYM [13],

and this result was extended to the complete set of operators in [14 – 16]. At the same time

there was investigated the integrability of the closed string motion in [17] and the following

works. This opened the new opportunities of understanding the AdS/CFT duality beyond

perturbation theory.

Another idea commonly used in string theory since [18] is that of the orbifold space.

An orbifold is a quotient of some manifold w.r.t. a discrete group. The procedure of orb-

ifoldization was expected to be useful in particular for model building. A strong motivation

for this is the usage of quotient spaces for (super)symmetry breaking. Another way to use

orbifold construction which was used recently is to embed some models into quiver gauge

theories.

Even though there are some works studying these dualities for some special orbifolds

or some special limits [19 – 27]; they mainly deal with the Abelian orbifolds and the cor-

responding quiver gauge theories. The main goal of this paper is to extend some of these

studies to the generic orbifolds with an arbitrary non-Abelian orbifold group. Organi-

zation of the paper is as follows. In the second section we introduce the orbifold gauge

theory which is the low-energy limit of the corresponding open string theory. We discuss

the subtleties specific to the general non-Abelian orbifolds. We introduce the two differ-

ent descriptions, the one using the twist fields (and most closely resembling the original

unorbifolded theory) as well as the one using the quiver diagram. Then we develop the

transition formulae between them. From the construction of observables it becomes clear

that in a given twisted sector one can diagonalize the twist field, and it allows one to apply

the techniques used for the Abelian orbifolds in the general case. In the third section we

review the Bethe Ansatz Equations (BAE) and generalize them to the generic orbifold

theories. The key ingredients of the construction are essentially the same as those for

the Abelian orbifolds. The key idea is the mentioned diagonalization of the twist field in

a given twisted sector, after which the setup reduces to the Abelian case modulo some

subtleties. In the fourth section we study some applications of the BAE. We consider

particular quivers (both Abelian and non-Abelian) and show how the eigenvectors of the

matrix of anomalous dimensions are rewritten in terms of the quiver notation. Appendix
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A contains the calculations related to the conversion between the two descriptions in the

orbifold gauge theory as well as the construction of observables. Appendix B summarizes

the facts about the simplest non-Abelian group Dn.

2. Orbifold gauge theory

We now turn to the study of the class of quiver gauge theories obtained by taking an

arbitrary (Abelian or non-Abelian) orbifold of N =4 supersymmetric U(N) gauge theory.

Our motivation is to investigate to what extent the recently uncovered large N integrability

ofN =4 SYM can be extended to this general class of orbifold gauge theories. In this section

we will summarize some of their relevant properties. The relevant references are [28 – 33].

It will be convenient to think of the quiver gauge theory as the low energy limit of

the open string theory on a stack of N D3-branes located near an orbifold singularity.

Before taking the orbifold quotient, the transverse space of the D3-branes is R6 ≃ C3. The

low energy field theory on the D3-branes is N = 4 SYM, with its field content (in N = 1

superfield notation): a vector multiplet A and three chiral multiplets ΦI , with I = 1, 2, 3,

that parameterize the three complex transverse positions of the D3-branes along C3.

Let Γ be some finite group of order |Γ|, that acts on C3. The orbifold space is obtained

by dividing out the action of the discrete group Γ. The transverse space to the D3-branes

thus becomes C3/Γ. When viewed from the covering space, the stack of N D3-branes in

the orbifold space give rise to the total of |Γ|N image D3-branes. It is convenient to label

the image D3-branes by a pair of Chan-Paton indices (i, h) with i = 1, . . . , N and h ∈ Γ,

so that the brane labeled by (i, h) is the image of the i-th brane inside the D3-stack under

the group element h ∈ Γ. The group Γ thus acts on the Chan-Paton indices as

g : (i, h) → (i, gh) . (2.1)

When the N coincident D-branes all approach the orbifold fixed point, the image branes

all coincide and the strings stretched between them have massless ground states. The

vector multiplet A has a separate matrix entry for each open string stretching between two

image branes, and thus defines an |Γ|N×|Γ|N matrix. Before imposing invariance under

the orbifold group Γ, the full collection of image branes thus supports an U(|Γ|N) gauge

symmetry. The orbifold projection, however, selects only those fields that are invariant

under the discrete group Γ. The discrete group acts on the vector multiplet A only via

the Chan-Paton indices and on the chiral multiplets ΦI via both the Chan-Paton and

transverse indices.

This projection operator does not commute with the full N = 4 superconformal in-

variance, but in the special case that Γ forms a subgroup of SU(3), the orbifold quotient

preserves N = 1 superconformal invariance. More generally, one could consider orbifolds

with Γ some subgroup of SO(6). However, it has been shown that for non-supersymmetric

orbifolds, the quantum theory has non-zero β-functions for certain double-trace opera-

tors and is therefore not conformally invariant. The renormalized Hamiltonian of non-

supersymmetric orbifolds thus contains extra terms that do not descend from the N = 4

Hamiltonian [34]. For this reason we will restrict ourselves to the supersymmetric subclass.
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Although the orbifold theories all have less supersymmetry, their action is assumed to

be identical to that of the parent N =4 theory, which in N =1 superfield notation reads

L =

∫
d4θ Tr

(
WαWα + eAΦ†

Ie
−AΦI

)
+

∫
d2θ ǫIJK Tr (ΦI [ΦJ ,ΦK ]) + c.c. (2.2)

Here the trace Tr is over the adjoint representation of the full U(|Γ|N) gauge group of the

N = 4 theory. The fields (A,Φ) of the orbifold theory, however, have to be Γ-invariant.

This invariance condition can be solved as

Ah,hg = A(g) , (2.3)

ΦI

h,hg = R(h)I

Jφ
J(g) . (2.4)

We see that after the projection, the Γ valued left and right Chan-Paton indices have

collapsed to a single group valued index. The gauge and matter fields can thus be thought

of as group algebra valued N×N matrices. We will refer to the above basis of orbifold

projected fields as the orbit basis (as distinguished from the quiver basis, that will be

introduced later).

Note that the orbifold projection does not commute with the full U(|Γ|N), the gauge

symmetry gets broken to a subgroup. This unbroken gauge group is identified as follows.

Recall that the orbifold group acts on the Chan-Paton indices of the gauge field via the

regular representation, and the latter decomposes into irreducible representations ρλ via

γreg(g) =
⊕

λ
ρλ(g)⊕Nλ , Nλ = dim ρλ . (2.5)

In words, each irreducible representation ρλ occurs Nλ times in the decomposition of the

regular representation. In explicit matrix notation, we have

γreg =




ρ1 ⊗ 1N1
0 . . . 0

0 ρ2 ⊗ 1N2
. . . 0

...
...

. . .
...

0 0 . . . ρr ⊗ 1Nr



, (2.6)

where each ρλ denotes an Nλ×Nλ matrix. By inspecting the explicit form (2.6) of γreg, it

is not difficult to derive that the orbifold gauge group, defined as the subgroup of U(|Γ|N)

transformations that commutes with γ(g) for all g ∈ Γ, takes the product form

⊗

λ
U(NNλ) . (2.7)

Here the product runs over all representations of Γ and each factor U(NNλ) is the sub-

group that rearranges the NNλ copies of the representation space Vλ of ρλ — it therefore

obviously commutes with Γ. Using Schur’s lemma, one proves that (2.7) indeed defines the

maximal unbroken gauge group: physical operators need only be gauge invariant under

this group.
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Figure 1: An untwisted state (left) and twisted state (right). Both are concatenated arrays of

open strings (lines) stretched between D3-branes (dots). The end-point brane of the twisted state

is the image under a finite group transformation g on its begin-point brane.

2.1 Construction of observables

The novel feature of the orbifold gauge theory is the emergence of the twisted states,

which are new compared to the parent theory. The untwisted sector is the subclass of

operators that come directly from the parent N = 4 theory. In the open string language,

the untwisted operators can be thought of as arrays of concatenated open strings attached

to several image D3-branes, as indicated on the left in the Fig 1. Such an operator is

written as

O = Tr
(
W

A1
W

A2
. . .W

AL

)
. (2.8)

Here W
A

stands for a (multiple) covariant derivative of one of the fields of the theory, in

N =1 notation:

W
A
∈
{
DnΦI , DmWα

}
; (2.9)

and each operator WA corresponds to a ground state of one of the open strings. The gauge

invariant trace implies that the array is closed: it begins and ends on the same D3-brane,

and thus represents a proper closed string state in the unorbifolded theory.

A twisted sector state, on the other hand, corresponds to a concatenated array of

open strings that ends on a different D3-brane, related via a finite group transformation

g ∈ Γ to the D3-brane where it begins. This configuration looks like an open string on the

covering space, but it represents a closed string on the orbifold space. Correspondingly, it

is associated with an operator that is not gauge invariant under the full U(|Γ|N) symmetry

of the cover theory, but that is invariant under the gauge group (2.7) of the orbifold theory.

In the gauge theory, the twisted states are represented as single trace expressions

O(g) = Tr
(
γ(g)W

A1
W

A1
. . .W

AL

)
, (2.10)

where we introduced a twist operator γ(g), defined as follows. When γ(g) acts from the

left on a matrix-valued operator WA , it acts via the group action (2.1) — the regular

representation γreg(g) — on the left Chan-Paton index. When γ(g) acts from the right, it

acts via the complex conjugate group action γreg(g) on the right Chan-Paton index. The
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actions from the left and from the right are not identical; instead, the operators WA of the

orbifold theory satisfy a relation of the form

γ(g)W
A

= R(g−1)B

A
W

B
γ(g) , (2.11)

where R(g)B
A denotes a matrix representation of the finite group Γ, acting on the C3 index

of W
A
.1

As a consequence of the orbifold projection, some of the physical operators (2.10) vanish

identically. Using equation (2.11) to commute γ(g) past all the fields in the operator shows

that a necessary condition for non-vanishing operators is that the total single trace operator

must be invariant under the simultaneous action of R(g)B

A
on all the spins. However, while

necessary, this is not sufficient. More generally, physical operators are of the form

OK(g) = KA1 A2 ˙˙˙ AL Tr
(
γ(g)W

A1
W

A1
. . .W

AL

)
, (2.12)

where K must be an invariant tensor under the complete stabilizer subgroup Sg of g, defined

as the subgroup within Γ of all elements that commute with g.2 In the untwisted case,

where g is the identity element in Γ, the stabilizer subgroup is the whole group Γ and indeed,

as we saw before, untwisted operators are in one-to-one correspondence with Γ-invariant

tensors. It is important to note that the basis (2.12) of operators is a complete basis, in

the sense that any operator of the seemingly more general class given in (2.10), that is

not of the form (2.12), vanishes identically. Detailed construction of twisted operators as

well as the proof of their gauge invariance is given in appendix A.1. Another important

fact is that the twist field γ(g) suffices to produce all the operators within the twist class

[g] (cf. [35]). Then the untwisted operators can naturally be viewed as those belonging to

the sector with the conjugacy class of the unit element [e]. Then any single representative

g ∈ [g] can be diagonalized; and then one can apply the tools used for the Abelian orbifolds

to the general non-Abelian case. If g is an element of order S in Γ, then its eigenvalues

are some phase factors of the form exp(2πisk/S). This observation will be exploited in

section 3 where we study the Bethe Ansatz Equations for the orbifold gauge theory.

2.2 Feynman rules

As an example we go through the derivation of the Feynman rules for the scalar field φI ; the

other fields are treated in a similar way. We can parameterize the invariant configurations

of the scalar field φI

ig,jh in terms of this group algebra valued object φI

ij(g), and this

group algebra valued field φ is to be integrated over in the path integral. Using the

parameterization (2.4) and the orthogonality of the defining representation R : Γ→ SO(6),

1Here R(g) = 1 in case WA has no C
3 index. Note further that inserting multiple twist operators in

the trace does not introduce a new class of operators, since by using the exchange relation (2.11) and the

property γ(g1)γ(g2) = γ(g1g2), one can always reduce any number of twist operators to a single overall

twist. This is as one would have expected from the string interpretation.
2It can be the case that even for some Sg-invariant tensor K(g) the corresponding operator OK vanishes

identically due to some symmetry reasons — for instance, this is the case in the Z6 quiver we consider in

section 4.
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f −1h
ρAB(f)=

f −1gfg
A B

h

A

A

B

B

f A

A

B

B

f

g2

g3

g1

g4

(a) (b) (c)

Figure 2: (a) When a line of the Feynman graph crosses the cut the Wick contraction 〈W
A
W

B
〉 is

non-diagonal, and proportional to the matrix element R
A B

(f). (b) The twist lines can be deformed

and moved through interaction vertices. (c) In the notation using the group valued fields untwisted

vertices obey the conservation condition, similar to the conservation of momentum: for the vertex

shown the product g1g2g3g4 = 1.

we get the kinetic term for the scalar field in the form

Lφφ =
1

2

∑

I

Tr∂µφ
I ∂µφI =

1

2
|Γ|
∑

g

∑

I,J

R(g)I

J ∂µ TrφI (g) ∂µφJ (g−1) . (2.13)

Then for the quadratic propagator the only modification compared to the original theory

is “conservation of the group index” and renormalization:

〈
φI

ij,g φ
J

kl,h

〉
= |Γ|−1 R(g)I

J

p2
δgh,e δil δjk , (2.14)

In terms of the original N = 4 fields (we omit the obvious Latin part of the Chan-Paton

indices)

〈
φI

h,g φ
J

f−1g, f−1h

〉
=

R(f)I

J

|Γ| p2
. (2.15)

Generally, for elementary fields (or their derivatives)W
A

there takes place the following

replacement in the propagator:3

〈W
A
W

B
〉N=4 = G(p) δA B → 〈W

A
W

B
〉 = 1

|Γ|
G(p) R

A B (f) . (2.16)

The factor of 1/|Γ| compensates for the overcounting of fields.

The propagator is not simply diagonal on the group valued Chan-Paton indices (g, h),

but there can be a twist by some group element f , that acts simultaneously on both the

left and right index. The advantage of this (redundant) double line notation is that the

interaction vertices coincide with those of the original theory, and the only modification is

the introduction of these twists along the propagators.

Equivalently, we can think of the twist as the assignment of a group element f to

each line of the dual graph to the Feynman diagram. We will call these lines on the dual

3We ignore the ghost fields. Gauge fixing is easy to do via the Feynman gauge. Since the gauge field A

can be treated as a group algebra valued, the gauge fixing and Faddeev-Popov ghosts can also be treated

as group algebra valued.
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graph ‘cuts’. When a propagator crosses a cut, the propagator 〈φI φJ〉 is non-diagonal:

the conventional factor δIJ gets replaced by the matrix element RIJ(f−1) with f the twist

along the cut. Vertices of the dual graph correspond to loops of the original Feynman

graph. The product of the group elements that meet at a dual vertex must multiply to the

identity element in Γ. (Unless the amplitude involves the insertion of some twist operator

at this dual vertex, see below.)

2.3 Quiver gauge theory

In this section, we will make a comparison between the above group theoretic description of

the physical operators with the quiver representation of the orbifold gauge theory. It is the

quiver gauge theory representation that makes the physical field content of orbifold gauge

theories most manifest. As discussed, the unbroken gauge group of the orbifold theory

takes the product form ⊗

λ
U(NNλ) , (2.17)

where the product runs over all representations ρλ of the finite group Γ, and Nλ = dimVλ.

Notice that, even in the case that N=1, i.e, for the world-brane theory of a single D3-brane

near an orbifold singularity, this gauge group contains several, in general non-Abelian,

factors. In the string theoretic construction, each gauge factor is associated to a stack

on NNλ so-called fractional D3-branes. There is one type of fractional brane for each

representation ρλ of the finite group.

The vector multiplets A arise as the ground states of open strings attached to a given

fractional brane. Let us denote by Aλ the vector multiplet of the fractional brane asso-

ciated to ρλ. Hence Aλ is an U(NNλ) gauge multiplet. In terms of the orbit basis A(g)

defined in (2.3), the quiver basis Aλ is obtained via the Fourier-like transformation (see

appendix A):

Aλ =
∑

g

ρλ(g)A(g) (2.18)

Setting up the quiver terminology, we will refer to each gauge factor and its associated

stack of fractional branes, as a node of the quiver diagram. There is one quiver node for

each irreducible representation of Γ.

In a quiver diagram, the nodes are connected by oriented lines: these represent the

chiral matter fields. In the string theory construction, the chiral matter fields ΦI arise

as the ground states of open strings that may have end-points on two different fractional

branes. Correspondingly, they transform as bi-fundamental fields under the product gauge

group (2.17). Algebraically the chiral matter fields Φλµ correspond to the invariant tensors

(C3⊗Vλ⊗V µ)Γ. The number nλµ̄ of chiral matter fields between two given nodes λ and µ

is determined by the multiplicity of ρµ in the decomposition of the tensor product between

the defining representation R and ρλ:

R⊗ ρλ =
⊕
µ
nλµ̄ ρµ . (2.19)

In the string construction, the number nλµ̄ is the intersection number between the two

fractional branes. The fields Φλµ̄ thus transform in the (NNλ,NNµ) bi-fundamental rep-
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resentation of the gauge group (2.17).4 This quiver basis Φλµ̄ is related to the orbit basis

ΦI(g) given in (2.4) via the linear transformation

Φλµ̄ =
∑

g,I

K I

λµ̄ ρµ(g)Φ
I
(g) , (2.20)

where Kλµ̄ denotes one of the nλµ̄ basis elements that spans the space of invariant tensors

in C3 ⊗ Vλ ⊗ V µ.

In the quiver basis, it is now easy to specify all possible single trace operators of the

orbifold gauge theory. For this, it is useful to introduce the notion of the path algebra of

the quiver diagram. A path is a concatenated array of arrows that connect quiver nodes

connected by oriented lines. The arrows are allowed to point back to the same node. We

can multiply two paths if one ends at the same node as where the other begins. We can

then connect them head to tail to produce a single longer path. In the quiver gauge theory,

each arrow of the path represents a gauge or matter operatorW
A

of the general form (2.9),

transforming in the corresponding representation of the quiver gauge group. Connecting

two arrows amounts to taking their gauge invariant product at the corresponding quiver

node. To write gauge invariant operators, we now simply choose arbitrary closed paths

along the quiver, pick a corresponding array of operators, and in the end take the trace.

How does this description of gauge invariant single trace operators compare with that

in terms of twisted sector states (2.12)? Let us pick some closed path Cλ, that starts and

ends at a given node λ but along the way visits the following sequence of quiver nodes

Cλ : λ ← µ ← ν ← . . . ← σ ← λ . (2.21)

For each arrow along this path, we pick the corresponding field and multiply them together,

and take the trace at the λ node

OCλ
= Trλ

(
Wλµ̄Wµν̄ · · ·Wσλ̄

)
. (2.22)

This is a manifestly gauge invariant operator of the quiver gauge theory. The equiva-

lence with the group algebraic description of the orbifold theory implies that this operator

must be a linear combination of twisted state operators OK(g) defined in eq. (2.12). A

straightforward calculation, described in appendix A, indeed shows that

OCλ
=
∑

g

K(g)
A1A2...AL Tr

(
γ(g)WA1 . . .WAL

)
, (2.23)

where the Sg-invariant tensor K(g) is given by

K(g)
A1A2...AL = Trλ

(
ρλ(g)KA1

λµ̄K
A2

µν̄ · · · K
AL

σλ̄

)
. (2.24)

The class of operators associated to closed loops on the quiver diagram span a complete

basis of twisted sector operators, and vice versa.

4As a check, let us count the number of independent components of the chiral matter field Φ. For each

arrow there are N2NλNµ components, and each node therefore connects to N2Nλ

P

{µ} dim Vµ independent

components. Since R ⊗ Vλ = ⊕{µ}Vµ, dimension counting gives
P

{µ} dimVµ = 3dim Vλ . Therefore, the

total number of independent components of Φ is 3N2
P

λ N2
λ = 3 |G| N2 . This is the expected result.
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3. Integrability: orbifolding the Bethe ansatz

The field theoretic problem we are trying to solve on the gauge theory side is diagonaliza-

tion of the matrix of anomalous dimensions in the large N (planar diagram) limit. It is

convenient to represent the field theory operators as the spin chain states,

OA1 A2 ...AL [g] ≡ Tr
(
γ(g)W

A1
W

A2
. . .W

AL

)
= |A1A2 . . . AL〉g . (3.1)

Using this terminology, the matrix of anomalous dimensions is represented as some spin

chain Hamiltonian H. Note that the basis (3.1) is overcomplete — some of the states

are projected out. Another subtlety is that one can perform a cyclic permutation in the

trace leading to a seemingly different spin chain representation. In the untwisted case

this results in an extra requirement on the physical spin chain state (i.e., one emerging

from some gauge theory operator) — invariance w.r.t. the translation operator, the zero

momentum condition. This particular choice of a representative makes the form of the

Hamiltonian the most simple. When a non-trivial twist field γ(g) is introduced, the zero

momentum constraint gets modified.

Since all the terms in the action are untwisted, in the planar limit there should be no

mixing between the sectors with different twists. A twisted sector is therefore a superselec-

tion sector: the twist [g] is preserved under time-evolution defined by H. This way we can

restrict ourselves to the operators O[g] with a fixed class [g]. However, the representation

of H as a spin chain Hamiltonian does depend on the twist sector. This dependence can

be derived based on the form of the Feynman rules. The sum over the twist factors locally

decouples from the remainder of the Feynman integral. In particular, the Γ-invariance of

the interaction vertices of the original N =4 Feynman diagram ensures that the cuts can

be deformed and moved through the vertices, as it is indicated in figure 2. Following this

procedure one can move the cuts, and translate them along the worldsheet spanned by the

Feynman diagram. Evidently, we can merge cuts that are along homologous cycles on the

worldsheet; the group element associated with the merged cut is the product of the original

twists.5 Proceeding this way, we can merge all the cuts and reduce the sum over the twist

factors to a single set of twists associated to a generating set of non-contractible loops of

the worldsheet spanned by the Feynman diagram.

Note that each operator insertion corresponds to a hole (puncture) on the graph sur-

face, and a planar diagram that describes the leading order large N limit of amplitudes

of some operators of the orbifold gauge theory (3.1), can be drawn on a cylinder (or a

sphere with the two punctures). In the untwisted sector there is only one non-contractible

loop wrapping the cylinder. Summation over this twist leads to projection onto the Γ-

invariant states. Hence in this case, the amplitudes of the orbifold coincide with those of

the N =4 theory, as advocated. The miraculous integrability of the N =4 theory therefore

directly carries over to the untwisted sector of the orbifold gauge theory, provided it is

supersymmetric.

5Summation over the different configurations leading to the same overall cut results in renormalization

N → |Γ|N in the 1/N expansion; cf. [33].
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σB(g)
−1σA(g)=

g−1h−1h

A

B

h

g

g−1h−1h

A

B

h

g

g−1h−1h

h

g

( ) ( )

(a) (b)

Figure 3: (a) A planar diagram on a cylinder. Introduction of the twist field causes appearance of

an extra vertical cut in the dual graph (dotted lines). Should this cut be located in the interaction

region it can be shifted away using the interchange relation (2.11). Representation matrix R(g)

being diagonalized, this shift results in a mere phase factor σA(g)σB(g)−1. Note that the twist field

gets conjugated, g → hgh−1, and this does not change its class. Then the summation over the cut

h results in the projection onto the Sg-invariant subspace. (b) Diagrams with high number of loops

can contain the wrapping interactions which do not reduce to the untwisted case. The diagram

shown would be multiplied by an extra factor, the character Tr R(g) as a result of the horizontal

loop wrapping the cylinder.

The story with the twisted sectors is slightly more complicated. In terms of the dual

graph each twist field can be represented as a tadpole ending in the corresponding puncture.

A direct consequence is the fact that the standard form of the dual graph consists of

one horizontal cut wrapping the cylinder and one vertical cut corresponding to the twist

(figure 3). However, the extra cut can be moved away from the interaction region using the

commutation relation (2.11). After this transformation the graph coincides with that of

the N =4 theory modulo renormalization N → |Γ|N and projection onto the Sg-invariant

states in (3.1). Unfortunately, this equivalence extends only up to the ℓ < L loops. The

reason for this restriction is that the ℓ-loop gauge theory Hamiltonian translates into a

semi-local spin chain Hamiltonian that connects ℓ+ 1 adjacent spins. So when ℓ ≥ L, the

Hamiltonian becomes fully delocalized, and includes the so-called wrapping terms, non-

local interactions that wrap around the full length of the spin chain. When this is the case,

the extra cut emerging from insertion of the twist field γ(g) can no longer be shifted away

from the interaction region, and some propagators inevitably cross it (figure 3b).

The conclusion is that locally, on any nearest neighbor set of spins, the interaction

terms in H all act identically to the local interaction terms of the N = 4 Hamiltonian,

as long as the local set of spins does not contain the twist operator γ(g). If the twist

generator is present in the interaction region, one could shift the twist operator to either

side, until it is outside the interaction region. In this way we derive, for example, that

the nearest neighbor interaction term, when acting on two spins separated by a twist γ(g),

gets modified via

H[12]WA
γ(g)W

B
= H̃CD

AB
W

C
γ(g)W

D
, (3.2)
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where

H̃CD

AB
= HCD′

AB′
R(g)B

′

B
R(g)D

D′
. (3.3)

This relation (and analogous relations for the higher order terms) expresses the Γ-invariance

of the local interaction terms of H — the twist field can be moved either to the left or to

the right, which results in the same phase factor.

It is important that in each given twisted sector [g] one can diagonalize the twist field

γ(g) and apply the methods that are used for the Abelian orbifolds to the general case.

3.1 Bethe equations: a brief introduction

We will start with the simplest example, the periodic Heisenberg su2 spin chain of length

L. Each of the L spins has a two-dimensional space of states C2 with the basis vectors |↓〉
and |↑〉 corresponding to the spin being oriented downward or upward. On the field theory

side this picture corresponds to the su2 subsector consisting of the two scalar fields Z and

W . Our goal is to diagonalize the Hamiltonian

H =

L∑

i=1

(
1−Pi,i+1

)
, (3.4)

where Pi,i+1 is the interchange operator acting between the i-th and the i+ 1-th sites. We

choose a vacuum state |↓ ↓ . . . ↓〉 with all spins pointing down. (TrZL operator in field

theory.) The next step is to consider states with one excitation,

|n〉 = |↓ ↓ . . . ↓ ↑n ↓ . . . ↓〉 (3.5)

with the spin up being at the n-th position. One can try to find a plane wave solution in

the form

|k〉 =
L∑

n=1

eikn |n〉 . (3.6)

Acting with the Hamiltonian, we get for the eigenvalue ǫ(k) = 1 − cos k. One still has to

identify |0〉 ≡ |L〉, and this leads to the periodicity condition

eikL = 1 . (3.7)

Physically such a solution corresponds to a standing wave. The next step is to consider

a solution with several waves. A remarkable feature of this system is its integrability. It

manifests itself in the fact that the scattering reduces to the two-particle scattering, and

the two-particle scattering is a mere exchange of quantum numbers. The state with the l

interacting waves writes as

|k1, k2, . . . kl〉 =
∑

1≤n1<...<nl≤L

an1,n2,...nl
(k1, k2, . . . kl) |n1, n2, . . . nl〉 . (3.8)

The corresponding coefficients

an1,n2,...nl
(k1, k2, . . . kl) =

∑

σ∈Sl

S(σ, k) exp i[kσ(1)n1 + · · ·+ kσ(l)nl] . (3.9)
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Here Sl is the group of permutations, and the phase factor S(σ, k) obeys the group property

S(σ1σ2, k) = S(σ2, k)S(σ1, σ2k) . (3.10)

For the interchange of the two neighboring excitations σi,i+1 the phase factor

S(σi,i+1, k) = S(ki, ki+1) = −ei(ki+ki+1) + 1− 2eiki+1

ei(ki+ki+1) + 1− 2eiki
(3.11)

reduces to the two-particle scattering phase. Then the periodicity condition reads

eik1L
∏

j 6=1

S(k1, kj) = 1 . (3.12)

The set of equations (3.12) is known as the Bethe ansatz equations (BAE).

These equations get modified for the orbifold gauge theory. After the diagonalization

the action of the twist field γ(g) on the fields Z and W can be brought to the form

g :

(
Z

W

)
→
(
ωsZ 0

0 ωsW

)(
Z

W

)
, (3.13)

where ω = e2πi/S ; S being the order of the element g, gS = 1. As it was argued, interaction

terms are unaffected by the orbifoldization procedure except for the interaction between

the first and the L-th site. As it was emphasized in [36], one can use the same bulk

solution (3.8), though the periodicity condition as well as the zero momentum constraint

will both acquire an extra phase factor. The simplest way to find these phases is to consider

the plane wave solution.

Bethe Ansatz Equations can be generalized to the chains with an arbitrary underlying

symmetry (super)algebra [37 – 41]. It is convenient to use the rapidities λ to describe the

excitations. There exist the r types of excitations, corresponding to the r simple roots.

Since there can be multiple excitations of the same type it is convenient to number the

corresponding spectral parameters as λj,k; where j = 1, 2, . . . r and k = 1, 2, . . . Kj , Kj

being the number of excitations of type j. The set of the BAE becomes

eiPj,kL =
∏

(j′,k′)6=(j,k)

Sjj′(λj,k, λj′,k′) ; (3.14)

where the scattering matrix and momenta are given by

Sjj′ =
λj,k − λj′,k′ + i

2aj,j′

λj,k − λj′,k′ − i
2aj,j′

, eiPj,k =
λj,k + i

2Vj

λj,k − i
2Vj

. (3.15)

(Here Vj are the Dynkin labels of the representation via which the algebra acts on each

site — twice the spin in the su2 case; and ajj′ are the elements of the Cartan matrix.) The

total energy of the corresponding eigenstate is

ǫ =

r∑

j=1

Kj∑

k=1

ǫj(λj,k) , ǫj(λj,k) =
Vj

λ2
j,k + 1

4V
2
j

. (3.16)
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The algebra behind the N =4 supersymmetry is the su2,2|4 superalgebra. Thus generic

operators of the field theory get identified with some states of the su2,2|4-symmetric spin

chain. The whole N = 4 theory was proved to be integrable in [14 – 16]. The energy

eigenvalues EO of H are related to the anomalous dimensions ∆O of local single trace

operators O by

∆O = λEO, (3.17)

with λ =
g2
YM

N

8π2 the ’t Hooft coupling.

Note that the spin chains with the different representations of su2,2|4 correspond to

different subclasses of operators in field theory. The two bosonic subalgebrae su2,2 and su4

of su2,2|4 are nothing but the algebra of the conformal group in four dimensions and the

R-symmetry algebra. Unlike the bosonic semisimple Lie algebrae, the Dynkin diagram of

a superalgebra is not unique. For the su2,2|4 there exist the two distinguished choices of

the root system, the so-called “Beauty” and the “Beast”; and they are discussed in [42].

Though the “Beast” is the most obvious system with one fermionic root, the “Beauty”

root system proves useful in the context of N =4 supersymmetry.

3.2 General orbifolds

As it was argued, there is no mixing between the different twisted sectors. Furthermore, in

each given twisted sector [g] one can construct all the states inserting one twist field γ(g), g

being any fixed representative of the conjugacy class [g]. In conjunction with the fact that

one can diagonalize the action of any given element g ∈ Γ — the problem reduces to the

Abelian case modulo some subtleties. In particular, the Sg-invariance does not completely

incorporate into Bethe equations; and it is to be imposed by hand — that is why some of

the Bethe eigenstates may be projected out.

Therefore, one can apply techniques similar to those used in [26] for the study of

Abelian orbifolds. Then each given element g ∈ Γ ⊂ SU4 can be brought to the diagonal

form so that in SU(4) it becomes

R(g) =




e−2πit1/S 0

e2πi(t1−t2)/S

e2πi(t2−t3)/S

0 e2πit3/S


 . (3.18)

Here S is the order of the element g, i.e., gS = 1. For supersymmetric orbifolds that we

consider the group Γ embeds into SU(3), and this imposes the extra restrictions on the

weights ti. Even though we need only the two independent parameters in order to describe

embedding Γ ⊂ SU(3), it may be convenient to keep all the three parameters t1, t2 and t3
in the calculations. In particular, it may account for different embeddings SU(3) ⊂ SU(4)

or different choices of the vacuum state.

The Bethe equations for the complete su2,2|4 algebra acquire some extra phases:

(λj,k + i
2Vj

λj,k − i
2Vj

)L
= Rj(g)

∏

(j′.k′)6=(j,k)

λj,k − λj′,k′ + i
2aj,j′

λj,k − λj′,k′ − i
2aj,j′

. (3.19)
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Similarly, the momentum constraint reads

R0(g)
7∏

j=1

Kj∏

k=0

λj,k + i
2Vj

λj,k − i
2Vj

= 1 . (3.20)

The phase factors

Rj(g) = e2πiqj/S , (3.21)

where the integers qj depend on the choice of the root system:

“Beauty” :
−t2⊙

0
⊖

−t1⊗
2t1−t2⊕

2t2−t1−t3⊕
2t3−t2⊕

t3⊗
0
⊖ (3.22)

“Beast” :
0
⊙

0
⊕

0
⊕

0
⊕

t1⊗
t2−2t1⊖

t1−2t2+t3⊖
t2−2t3⊖ (3.23)

(The leftmost “root” corresponds to the phase R0(g) = e2πiq0/S .) Let us stress that this

structure is the direct generalization of that in the su2 subsector: the bulk ansatz remains

unaltered, while the boundary conditions get modified. Recall that in the su2 case there

is a single root γ1 = α12, and the weight q1 = sW − sZ ≡ s2 − s1. Analogously, for an

excitation associated with some simple root γ = αij the corresponding weight qγ = sj − si

is the difference of the two corresponding charges. The number q0 is determined by the

choice of the Bethe vacuum.

There is an elegant way to summarize all the Bethe equation and momentum constraint

together. In order to do this one introduces the two new types of excitations to the existing

seven types (j = 1, . . . , rk su2,2|4 = 7). The quasi-excitation of type j = 0 corresponds to

the insertion of a new spin chain site. In order to have a length L chain one is to insert

exactly the K0 = L excitations of type 0. The quasi-excitation of type j = −1 corresponds

to the twist field. The scattering phases of the excitations are6

Sj,j′ =
λj,k − λj′,k′ + i

2aj,j′

λj,k − λj′,k′ − i
2aj,j′

, (3.24)

Sj,0 =
λj,k − i

2Vj

λj,k + i
2Vj

, Sj,−1 = Rj(g) ; (3.25)

S0,0 = 1 , S0,−1 = R0(g) . (3.26)

Type 0 excitation do not have an associated spectral parameter, while type −1 excitations

can have different twist classes [g]. Excitations of both type 0 and −1 do not contribute

to the total energy.

With these notations we can therefore summarize all the Bethe equations as

J∏

j′=−1

Kj′∏

k′=1

(j′,k′)6=(j,k)

Sj,j′(λj,k, λj′,k′) = 1 . (3.27)

6Note that the scattering phase S−1,−1 is not needed as we restrict ourselves to one excitation of type

−1. Even though one may introduce several such excitations it would cause some unnecessary technical

difficulties. As it was shown, insertion of a single twist field suffices to produce all the orbifold states.
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The equations for j = 1, . . . , 7 give the BAE (3.19), equation for j = 0 gives the momentum

constraint (3.20),7 and equation for j = −1 gives the “zero charge condition”

R0(g)
L

7∏

j′=1

Rj′(g)
Kj′ . (3.28)

It implies the g-invariance of the corresponding state in the field theory. Again, let us stress

that for a generic orbifold this condition is not sufficient, and there should be imposed a

more restrictive invariance condition w.r.t. the full stabilizer Sg. As a result, some of the

Bethe eigenstates may be projected out in field theory.

4. Example quivers

Here we study application of the Bethe equations to the two example quivers, ones with

both Abelian and non-Abelian orbifold group. For these simple examples one can easily

determine the anomalous dimensions of operators in the twisted sectors. Then these op-

erators can be recast into the quiver notation. Generally operators corresponding to the

closed paths in the quiver are not the eigenvectors of the matrix of anomalous dimensions.

In other words, an operator corresponding to a closed loop in the quiver is typically a mix

of operators with different conformal dimensions; neither does it belong to a given twisted

sector.

4.1 Abelian Z6 quiver

Here we consider a simple example, Z6 quiver (see figure 4). We restrict ourselves to the su2

subsector formed by the two scalars, Z with charge sZ = 1 and W with charge sW = −2.

We will study the twisted sector with the twist γ
n, n = 0, . . . , 5; γ being the generating

element of Z6. Let us choose the length of the spin chain L = 3; then the vacuum can be

chosen as Tr
[
γZZZ

]
— note that it will be projected out. There also exist the excited

states with one or three W ’s, while the states with the two excitations will also be projected

out.

Our goal will be to describe these Bethe vectors in terms of the quiver notation. By

Oijki ≡ Tr Φi
jΦ

j
kΦ

k
i we will denote the quiver gauge theory operator corresponding to the

closed cycle between the three nodes k → j → i in the quiver.

Note that the state with the three excitations is unique in each given twisted sector,

and it corresponds to the field theory operator Tr
[
γ

nWWW
]
. Commuting the twist field

γ
n with one of the fields W we find that

Tr
[
γ

nWWW
]

= e2πinsW /6 Tr
[
γ

nWWW
]
; (4.1)

i.e., this state is projected out in all sectors except for n = 0 and n = 3. The reason for

this is the extra symmetry: it is sufficient to commute the twist field with only one of the

7Although there are L quasi-excitations of type 0, there is only one corresponding Bethe equation,

because all of these quasi-excitations are equivalent, and they have no spectral parameter which might

distinguish them.
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Figure 4: (a) The Z6 quiver. There are the six nodes corresponding to the six representations

of Z6. We show only the scalar lines corresponding to the fields Z (blue lines) transforming in

RZ ≃ ρ1 and W (red lines) transforming in RW ≃ ρ4 ≃ ρ
−2. (b) The D5 quiver with the two-

dimensional defining representation R ≃ ρ
1
. Note that for these two quivers we show only the lines

corresponding to the su2 subsector; i.e., the two scalar fields.

three W fields. Note that the total charge of the three fields W is zero, and normally one

would expect Tr
[
γWWW

]
to be a non-trivial operator.

Using the formula (2.23) we find that

O0420 = Tr
[
WWW

]
+ Tr

[
γ

3WWW
]
, (4.2)

O1531 = Tr
[
WWW

]
− Tr

[
γ

3WWW
]
; (4.3)

or

Tr
[
WWW

]
=

1

2
O0420 +

1

2
O1531 , (4.4)

Tr
[
γ

3WWW
]

=
1

2
O0420 −

1

2
O1531 . (4.5)

Graphically the operators O042 and O153 correspond to the two closed triangles formed by

the red lines. Applying the Hamiltonian we find the anomalous dimensions

∆Tr [γ3WWW ] = ∆Tr [γ3WWW ] = 0 . (4.6)

The states with one excitation have the form Tr
[
γ

nZZW
]
, and there is one such state

in each given twisted sector. These operators correspond to the triangles with the two blue

(field Z) and one red (field W ) line. There are six such triangles and there are six different

operators with n = 1, . . . , 5 — these numbers coincide as we expect. The transition formula

between these two descriptions is

Ol, l+1, l+2, l =

5∑

n=0

e−2πi ln
6 Tr

[
γ

nZZW
]
; (4.7)
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performing the Fourier transform yields

Tr
[
γ

nZZW
]

=
1

6

5∑

l=0

e2πi ln
6 Ol, l+1, l+2, l . (4.8)

These operators diagonalize the matrix of anomalous dimensions. Direct application of the

Hamiltonian shows that the corresponding eigenvalues are

∆Tr [γnZZW ] = 4λ sin2 πn

6
. (4.9)

This simple example illustrates the interrelation of the two descriptions in the orbifold

gauge theory. First, the quiver description gives a very clear understanding of what the

physical fields and gauge invariant operators are, while in the “orbit” description using

the twist fields some of the operators may be projected out. On the other hand, the

description using the twist fields proves to be more robust for studying the field theory

dynamics (the matrix of anomalous dimensions). In order to illustrate this let us write

the part of the action responsible for the non-trivial part of the interaction Hamiltonian,

Tr
[
ZWZ†W † +WZW †Z†

]
. In terms of the quiver notation

Tr
[
ZWZ†W † +WZW †Z†

]
=
∑

l

[
Ol,l+1,l−1,l−2,l +Ol,l−2,l−1,l+1,l

]
(4.10)

=
∑

l

Tr
[
Z l

l+1W
l+1
l−1 Z

l−2 †
l−1 W l−2 †

l +W l
l−2 Z

l−2
l−1 W

l+1 †
l−1 Z l †

l+1

]
.

Here Zk
l denotes the field corresponding to the quiver arrow going from node l to node k.

Note that the conjugation changes the direction of the corresponding arrow; e.g., Z1 †
2 is an

arrow going from node 1 to node 2. Indeed, as we see, studying the matrix of anomalous

dimensions using the quiver notation would have been more complicated.

4.2 Non-abelian D5 quiver

Next we consider a simple orbifold with a non-Abelian discrete group D5 (the facts about

the dihedral group DS as well as its representation ring are given in appendix B.) The

corresponding quiver is shown in figure 4. Again, we study the su2 sector, and the scalar

field ΦI transforms in the two-dimensional representation R ≃ ρ1. From the quiver rep-

resentation it is clear that there are the four different operators of length L = 2; namely,

those are

O010 , O0̃10̃ , O121 , O222 . (4.11)

On the other hand, there are the four different twist classes, {[e], [r], [r2], [σ]}. Applying

the definitions of the operators (A.28), we see that in each twist class there is exactly one

non-trivial operator; thus there are the total of four operators of length two:

Oe = Tr
[
ZW

]
, Or = Tr

[
γ(r)ZW

]
, Or2 = Tr

[
γ(r2)ZW

]
, Oσ = Tr

[
γ(σ)ZZ

]
.

(4.12)

Here Z andW denote the first and second components of the field ΦI . Note that the product

of the two fields ZZ has transforms non-trivially under the action of r; nevertheless, in the
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sector with twist [σ] the operator Oσ = Tr
[
γ(σ)ZZ

]
is non-trivial as r 6∈Sσ. The absence

of mixing between the different twist classes ensures that the set of operators {Oe, Or,

Or2 , Oσ} diagonalize the matrix of anomalous dimensions. Acting with the Hamiltonian

we find the corresponding anomalous dimensions as

∆Oe = 0 , ∆Or = 4λ sin2 π

5
=

5−
√

5

2
λ , ∆Or2

= 4λ sin2 2π

5
=

5 +
√

5

2
λ , ∆Oσ = 0 .

(4.13)

The same eigenvalues can be obtained solving the Bethe equations. The three operators

Oe, Or and Or2 are the states with one excitation. Diagonalizing the twist field as

γ(g) =

(
eiα 0

0 e−iα

)
, g = e, r, r2 ; (4.14)

we find that the Bethe equation and the momentum constraint reduce to

λ+ i
2

λ− i
2

= eiα , ǫ =
1

λ2 + 1
4

. (4.15)

This gives

λ =
1

2
cot

α

2
, ǫ = 4 sinh2 α

2
. (4.16)

For the twist element g = e, r, r2 we have α = 0, 2π/5, 4π/5 correspondingly. This repro-

duces the correct result. The twist field γ(g) is non-diagonal. After the diagonalization of

γ(σ) operator Oσ maps to the vacuum state, and that is why ∆Oσ = 0.

The next step is to find the dictionary between the two notations. In order to do

this one can start with the quiver notation and rewrite the corresponding operators using

the transition rules (A.21) and (A.22) from appendix A. The two operators O010 and

O0̃10̃ correspond to the closed paths ρ0 ← ρ1 ← ρ0 and ρ0̃ ← ρ1 ← ρ0̃. Since the

representations ρ0 and ρ0̃ are one-dimensional, the corresponding invariant tensors

KAB
1
1 = KAB (4.17)

(the indices A, B belong to the defining representation R ≃ ρ1.) The non-zero components

are

K12 = K21 =
1√
2

(4.18)

(note that the normalization respects the unitarity condition.) Then

KAB(g) = KAB ρλ(g) , λ = 0, 0̃ . (4.19)

This gives

O010 =
√

2 Tr
[
ZW + (1 + ω)γ(r)ZW + (1 + ω2)γ(r2)ZW + 5γ(σ)ZZ

]

=
√

2
[
Oe + (1 + ω)Or + (1 + ω2)Or2 + 5Oσ

]
; (4.20)

O0̃10̃ =
√

2 Tr
[
ZW + (1 + ω)γ(r)ZW + (1 + ω2)γ(r2)ZW − 5γ(σ)ZZ

]

=
√

2
[
Oe + (1 + ω)Or + (1 + ω2)Or2 − 5Oσ

]
. (4.21)
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(We have used the permutation relation (A.31).)

Next, O121 corresponds to the product of the two tensors,

KAB
k
l =

∑

p∈ρ2

Kp
AlKk

Bp , k, l ∈ ρ1 . (4.22)

The non-trivial coefficients corresponding to the decomposition R ⊗ ρ1 → ρ2 are K1
11 =

K2
22 = 1, while those corresponding to the decomposition R⊗ ρ2 → ρ1 are K1

21 = K2
12 = 1.

This gives the corresponding invariant tensor in (4.22):

K12
1
1 = K21

2
2 = 1 . (4.23)

Therefore, one identifies

O121 = 2
[
Oe + (ω2 + ω4)Or + (ω3 + ω4)Or2

]
. (4.24)

Similarly, for the operator O222 we need to find the decomposition R⊗ ρ2 → ρ2. The

non-trivial coefficients are K2
11 = K1

22 = 1. Consequently,

K12
1
1 = K21

2
2 = 1 (4.25)

and

O222 = 2
[
Oe + 2ω3Or + (1 + ω)Or2

]
. (4.26)

These formulae give the transition between the two bases in the operator space.

5. Concluding remarks

As we have seen, methods of studying the Abelian orbifold gauge theories can be extended

to arbitrary non-Abelian setups with minor modifications. The key argument is that the

diagonalization of the twist field in each given twisted sector allows one to apply the

techniques used for the Abelian case. Indeed, in a given twisted sector [g] the BAE reduce

to those in the Abelian theory; though some of the states may still be projected out. As

a general rule, which states survive the projection is determined by the invariant tensors

of the stabilizer subgroup Sg; although there can be present extra symmetries projecting

out some of the conceivably non-trivial states. A useful feature is that there is no mixing

between the different twisted sectors; and this superselection rule simplifies diagonalization

of the matrix of anomalous dimensions. On the other hand, one can use the quiver gauge

theory notation. In this language the problems with some states being projected out do

not appear, but the matrix of anomalous dimensions becomes more complicated.

Diagonalization of the twist field allows one to extend some of the results of the

AdS/CFT correspondence to the general orbifolds. In particular, exactly as in the Abelian

case, orbifoldization amounts to appearance of the fractional mode numbers, on both closed

string and Bethe equations side [23]. Given the well established full one-loop agreement

between the classical energies and anomalous dimensions as the functions of the mode

numbers in [43 – 45], the correspondence holds for the arbitrary orbifold at one loop.
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It seems that the higher loop techniques described in [26, 46] apply to the non-Abelian

case as well. This would open a possibility of applying the existing powerful integrability

techniques to the quiver gauge theories with reduced supersymmetry. In particular, one

would need to verify that the duality relations between the roots of different types are not

violated (e.g., by some states being projected out). This will be done elsewhere.
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A. Quiver vs orbit description

We show that the two descriptions of the quiver gauge theory field content are equivalent

and develop explicit transition formulae between them. First we introduce the basis in the

field space of the parent N =4 theory. As we saw in section 2, Chan-Paton indices of the

fields transform in the regular representation of the orbifold group Γ. Namely, the fields

belong to

V ⊥ ⊗ V ⊕N
reg ⊗ V̄ ⊕N

reg ≃ V ⊥ ⊗ Vreg ⊗ V̄reg ⊗ C
N ⊗ C

∗N (A.1)

V ⊥ being the representation corresponding to the transverse indices. We are going to use

the two orthonormal bases in the group algebra Vreg ≃ C[Γ],

{eg = g} (A.2)

and

{Eλ
mn =

1√
Sλ

∑

g

ρλ
nm(g) g} , Sλ =

|Γ|
dimVλ

. (A.3)

The group acts on them according to

h : eg → ehg , (A.4)

h : Eλ
mn →

∑

k

ρλ
nk(h

−1) Eλ
mk =

∑

k

Eλ
mk ρ

λ
kn(h) . (A.5)

The relation between these bases is

eg =
∑

λ

1√
Sλ

∑

mn

ρ
λ
nm(g) Eλ

mn , (A.6)

Eλ
mn =

1√
Sλ

∑

g

ρλ
nm(g) eg . (A.7)
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The dual bases are introduced according to e∗g(eh) = δgh and Eλ∗
kl (E

µ
mn) = δλµ δkm δln. Next

we construct the two bases in the field space. These basis vectors are to label the invariant

configurations in the field space, thus we need to find the invariant configurations
(
V ⊥ ⊗ V ⊕N

reg ⊗ V̄ ⊕N
reg

)Γ
≃
(
V ⊥ ⊗ Vreg ⊗ V̄reg

)Γ
⊗ C

N ⊗ C
∗N . (A.8)

In what follows we are going to drop the trivial CN ⊗C∗N factor

Let us start with the gauge field. The “orbit” basis

tg =
∑

h

eh ⊗ e∗hg (A.9)

has a natural interpretation in terms of invariant combinations of strings stretching between

image branes. Similarly, the product tg ◦ th = tgh has a natural interpretation in terms of

gluing the ends of open strings. Note that the hermitian conjugate t
†
g = tg−1 . In order to

build the “quiver” basis we note that Eλ
mn do not transform in the first index (recall that

each representation Rλ enters Rreg with multiplicity equal to Nλ = dimVλ — and this is

the first index of Eλ
mn that numbers these copies). Therefore, the combination

Tλ
mn =

∑

k

Eλ
mk ⊗ Eλ∗

nk (A.10)

is Γ-invariant. The multiplication rule is Tλ
mn ◦ T

µ
kl = δλµ δkn Tλ

ml. Hermitian conjugate

T
λ†
mn = Tλ

nm. Here we recognize the matrix algebra
⊕

λ gl(vλ) ≃ C[Γ]. Thus, in these two

calculations we get the same answer; i.e., the algebrae of tg and Tλ
mn are both isomorphic

to the group algebra. A straightforward calculation shows that the two bases are related

by a discrete Fourier transform,

tg =
∑

λ

∑

km

ρλ
mk(g)T

λ
mk . (A.11)

Now we can do a similar calculation for the scalar and spinor fields which have trans-

verse indices with non-trivial transformation rules. In this case we have to find the invariant

subspace
(
V ⊥ ⊗ Vreg ⊗ V̄reg

)Γ
. Denote the basis of the transverse representation V ⊥ as

{fA ≡ eα,A}. Then the “orbit” basis has the form

tA,g =
∑

h

(h⊲ fA)⊗ eh ⊗ e∗hg ; (A.12)

where in terms of components the action is h⊲ fA =
∑

B ρ
α
BA(h) fB . Since the representa-

tion Rα is real, hermitian conjugation acts according to t
†
A,g =

∑
B ρBA(g−1)tB,g−1. To

find the “quiver” basis we will need to find the invariant tensors in the product
(
V ⊥ ⊗ Vreg ⊗ V̄reg

)Γ
≃
⊕

λ,µ

(
Vα ⊗ Vλ ⊗ V ∗

µ

)Γ
⊗ C

Nλ ⊗ C
∗Nµ .

To do it we decompose the product of representations Rα and Rλ into a direct sum of

irreducible representations. In particular, in terms of basis vectors

eαA ⊗ eλl =
∑

µm

Kµm
αA,λl eµm and eµm =

∑

A,l

Kµm
αA,λl eαA ⊗ eλl .
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Therefore, the invariant configuration is

∑

m

eµm ⊗ e∗µm =
∑

A,l,m

Kµm
αA,λl eαA ⊗ eλl ⊗ e∗µm .

(The field components of the invariant configuration are given by the invariant tensor,

ΦAl
m ∼ Kµm

αA,λl.) This gives

T
λµ
lm =

∑

A,i,j

Kµj
αI,λi fA ⊗ Eλ

li ⊗ Eµ∗
mj . (A.13)

Note that here the indices l and m are the indices of the gauge groups at the correspond-

ing nodes Rλ and Rµ. These indices appear owing to the fact that each representation

Rλ enters the decomposition of the regular representation Rreg with multiplicity Nλ. A

calculation similar to that for the gauge field gives

tA,g =
∑

λ,l

∑

µ,km

dimVλ

dimVµ
Kµk

A,λl ρ
µ
km(g)Tλµ

lm . (A.14)

The presence of the factor Kµ·
A,λ· restricts the sum over (λ, µ) only to those pairs which are

connected by a line in the quiver. Using (A.14), we can find the relation between the field

components in the two notations,

φλµ
lm =

∑

g

∑

k

Nλ

Nµ
Kµk

A,λl ρ
µ
km(g)φA

g . (A.15)

The matrix product of the quiver gauge theory gives rise to the (modified) convolution in

terms of the group algebra. Particularly, the product of the two fields φ and ψ with the

transverse indices transforming in the representations Rα and Rβ is

∑

m

φλµ
lm ψµν

mn =
Nλ

Nν

∑

g,h

Kνr
αA,βB,λl ρν

nr(h
−1g−1) ρ

β
BC(g)φA

g ψ
C
h . (A.16)

Here Kνr
αA,βB,λl =

∑
pK

µp
αA,λl Kνr

βB,µp is (one of) the invariant tensors corresponding to the

decomposition Rα ⊗ Rβ ⊗ Rλ → Rν . Note that (A.16) has the same structure as (A.15),

the product φ ◦ ψ having the defining representation Rα ⊗Rβ . The convolution rule is

(φ ◦ ψ)AB
g =

∑

h

φA
h ρBC(h)ψC

h−1g . (A.17)

Both formulae (A.16) and (A.17) are also valid for the gauge fields which have no transverse

indices (trivial representation). In this case some matrix elements and decomposition

tensors become degenerate. Let us stress that the multiplication rule (A.17) naturally

corresponds to the standard matrix multiplication in the parent SU(|Γ|N) theory. This

means that ∑

f

φA
hf ψ

B
fg = ρ

α
AA′(h) ρ

β
BB′(h) (φ ◦ ψ)A

′B′

h−1g . (A.18)
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This way of multiplication is induced from the original theory, and that is why it respects

the gauge transformations. Another nice feature of the formula (A.16) is that when there

exist several arrows going between different nodes the choice of a given arrow affects only

the choice of the invariant tensors and does not affect the convolution product (A.17). It

means that all the operators corresponding to the different paths (not necessarily closed)

in the quiver formed by L consequent scalar lines λ1 → λ2 → · · · → λL+1 are contained in

the product φA1 . . . φAL .

We can summarize these results as follows. An operator formed in the quiver notation

as the product φλν1 φν1ν2 . . . φνL−1µ can be recast as

(
φ ◦ · · · ◦ φ

)λµ

lm
=
∑

g

∑

k

Nλ

Nµ
KA1 ...AL

µk

λl ρ
µ
km(g)

(
φ ◦ · · · ◦ φ

)A1 ...AL

g
; (A.19)

where the invariant tensor K is the one corresponding to the decomposition Rλ ⊗ Rν1
⊗

· · · ⊗RνL−1
→ Rµ. The product of fields in the r.h.s. is calculated according to (A.17). In

its turn it is related to the product of the fields of the original N = 4 theory as

(
φ

A1 , . . . φ
AL
)

h,hg
=

∑

B1 ,...,BL

ρA1 B1
(h) . . . ρAL BL

(h)
(
φ ◦ · · · ◦ φ

)B1 ...BL

g
. (A.20)

These formulae will be of crucial importance for constructing the gauge invariant observ-

ables.

A.1 Construction of observables

In order to construct gauge invariant observables it is convenient to use the quiver notation.

Taking a closed loop in the quiver and using (A.19) one can write the corresponding

operator as

Tr λ1
φλ1λ2 φλ2λ3 . . . φλLλ1 =

∑

g

∑

k, l

K
A1,...AL

λ1k

λ1l
ρλ

kl(g)
(
φ ◦ . . . ◦ φ

)A1,...AL

g
; (A.21)

where the invariant tensor

K
A1,...AL

λ1k

λ1l
=

∑

l2,..., lL

Kλ2l2

A1 λ1l
Kλ3l3

A2 λ2l2
. . .KλLlL

AL−1 λL−1lL−1
Kλ1k

AL λLlL
(A.22)

corresponds to the closed path λ1 → λL → · · · → λ2 → λ1. Note that the l.h.s. is explicitly

symmetric w.r.t. the cyclic permutations of the fields under the trace. There also exists a

different way to construct gauge invariant operators. Namely, let us start with the ansatz

O[K] =
∑

g

∑

A1 ,... AL

KA1 ... AL
(g)
(
φ ◦ . . . ◦ φ

)A1,...Ak

g
. (A.23)

Generally such an expression represents a sum of operators corresponding to some paths

in the quiver, not necessarily closed. That is why the gauge invariance condition has to be

imposed separately, and it yields

KB1 ···BL
(h−1gh) =

∑

A1 ···AL

KA1 ···AL
(g) ρA1 B1

(h) . . . ρAL BL
(h) . (A.24)

– 24 –



J
H
E
P
0
4
(
2
0
0
8
)
0
1
3

A straightforward consequence of this result is that K[g] has to be an invariant tensor w.r.t.

the stabilizer subgroup Sg. Note that in (A.21) we had

KA1...AL
(g) =

∑

k,l

KA1,...AL

λk
λl ρλ

kl(g) , (A.25)

and it obviously satisfies (A.24). On the other side, tensor K(g) can be expanded in Fourier

series as a function on the group,

KA1...AL
(g) =

∑

λ

∑

k,l

K̃(λ)
A1,...AL

λk
λl ρλ

kl(g) ; (A.26)

and then the condition (A.24) translates into the requirement that the coefficients

K̃(λ)
A1,...AL

λk
λl are invariant tensors. These considerations provide a dictionary between the

two notations in the quiver gauge theory.

It is very important that the gauge invariance condition (A.24) relates the values of the

tensor K(g) within the same conjugacy class, and there is no relation between the values of

K on the different conjugacy classes. That is why one can build a gauge invariant operator

with K(g) 6= 0 only on a given conjugacy class [g]. Such operators are said to belong to the

twisted sector with the twist [g] (determined only up to a conjugation). One can choose a

reference element g in the conjugacy class [hgh−1] and set KA1...AL
(g) = KA1...AL

, KA1...AL

being some Sg-invariant tensor. Then (A.24) determines the values of K(h−1gh) on all the

elements of the conjugacy class. The corresponding operator is

O[K] =
∑

g,h

∑

A1 ···AL

∑

B1 ···BL

KA1 ···AL
ρA1 B1

(h) . . . ρAL BL
(h)
(
φ ◦ · · · φ

)B1 ···BL

h−1gh
; (A.27)

and it rewrites in terms of the fields of the parent N = 4 theory as

O[K] =
∑

g,h

∑

A1 ···AL

KA1 ···AL
Tr
[
γ(g)φ

A1 . . . φ
AL
]
. (A.28)

The twist field γ(g) acts on the dynamical fields as follows,

(
φA

γ(g)
)
h1,h2

= φA
h1,gh2

, (A.29)
(
γ(g)φA

)
h1,h2

= φA
g−1h1,h2

. (A.30)

Invariance condition imposed by the orbifold projection on the fields implies the interchange

relation (
γ(g)φA

)
= ρAB(g−1)

(
φB

γ(g)
)
. (A.31)

B. Representation ring of the dihedral group

The dihedral group DS is generated by the two elements, r and σ, with the additional

relations

rS = σ2 = 1 , rσ = σr−1 . (B.1)
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[e] [rm] [σ]

χ0 1 1 1

χ0̃ 1 1 −1

χl 2 2 cos
(
2π lm

S

)
0

⊗ ρ0 ρ0̃ ρk

ρ0 ρ0 ρ0̃ ρk

ρ0̃ ρ0̃ ρ0 ρk

ρl ρl ρl

{
ρk+l ⊕ ρk−l , k 6= l

ρ2l ⊕ ρ0 ⊕ ρ0̃ , k = l

g e r r2 [σ]

Sg D5 {e, r, . . . , r4} ≃ Z5 {e, r, . . . , r4} ≃ Z5 {e, σ}

Table 1: Table of characters and representation ring (multiplication table) of the dihedral group

DS=2n+1. Stabilizer subgroups Sg for a representative of each conjugacy class of the group D5.

The order of the group |DS | = 2S. We will restrict ourselves to the odd S = 2n+ 1. Then

there are the n + 2 conjugacy classes, O1 = {e}, O2 = {r, r2n},. . . , On+1 = {rn, rn+1},
On+2 = {σ, σr, . . . , σr2n}. Thus there exist the n + 2 irreducible representations. Among

them there are the n two-dimensional representations ρm:

ρm(r) =

(
ωm 0

0 ω−m

)
, ρm(σ) =

(
0 1

1 0

)
, m = 1, 2, . . . n . (B.2)

Here ω = e2πi/S There are also the two one-dimensional representations ρ0 and ρ0̃:

ρ0(r) = 1 , ρ0(σ) = 1 ; ρ0̃(r) = 1 , ρ0̃(σ) = −1 . (B.3)

The table of characters as well as the representation ring and the stabilizer subgroups of

each element of the group D2n+1 are shown in table 1.
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